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We considered the two-body problem of two objects interacting by means of a 
conservative central force, with no other external forces acting.  This problem eventually 
simplifies from that of 6 degrees of freedom (for 2 particles in three dimensions) to a single 
particle moving in one dimension!  After peeling off the center of mass motion (at constant 
velocity) and jumping to the CM reference frame, the Lagrangian simplified to: ℒ = 1

2
𝜇𝑟̇2 −

𝑈(𝑟).  The total angular momentum is constant, so that the motion (namely the vectors 𝑟 and 
𝑟̇) must remain in a fixed two-dimensional plane.  The Lagrangian can be written as ℒ =
1
2
𝜇(𝑟̇2 + 𝑟2𝜑̇2) − 𝑈(𝑟).  The two Euler-Lagrange equations can be combined into a single 

equation for the relative coordinate: 𝜇𝑟̈ = ℓ2/𝜇𝑟3 − 𝑑𝑑/𝑑𝑑.  This can be expressed in terms 
of the effective potential as 𝜇𝑟̈ = −𝑑𝑈𝑒𝑒𝑒/𝑑𝑑, where 𝑈𝑒𝑒𝑒(𝑟) = 𝑈(𝑟) + ℓ2/2𝜇𝑟2. 

Using the example of gravity for 𝑈(𝑟) we found that the effective potential (for ℓ > 0) 
has a minimum at a finite value of 𝑟, diverges as 𝑟 goes to zero, and approaches zero from 
below as 𝑟 goes to infinity.  We found that mechanical energy for the relative coordinate is 

conserved and equal to 𝐸 = 𝜇𝑟̇2

2
+ ℓ2

2𝜇𝑟2
+ 𝑈(𝑟).  Since kinetic energy is either positive or 

zero, the particle must be located in a region where 𝐸 ≥ 𝑈𝑒𝑒𝑒,𝑚𝑚𝑚.  We see that when 𝐸 > 0 
the particle has an un-bounded orbit, while when 𝐸 < 0 it has a bounded orbit trapped 
between minimum and maximum values of 𝑟.   

We then solved the radial equation 𝜇𝑟̈ = ℓ2

𝜇𝑟3
+ 𝐹(𝑟) for inverse-square force-laws of the 

form 𝐹(𝑟) = −𝛾/𝑟2, and found a solution that expressed the radial coordinate in terms of the 
angular polar coordinate, 𝑟 = 𝑟(𝜑), in which time has been eliminated. The result is 

𝑟(𝜑) = 𝑐
1+𝜖 cos𝜑

, where 𝑐 = ℓ2

𝜇𝜇
 is a length scale and 𝜖 is an un-determined constant.  This is 

the equation for the orbit of a planet around the sun, or a satellite around the earth.   

Note that when the un-determined constant 𝜖 > 1, the denominator of 𝑟(𝜑) has a zero for 
some angle 𝜑, and the particle is off at infinity for that angle.  This is an un-bounded orbit, 
like those with energy 𝐸 > 0 noted in the last lecture.  When 𝜖 < 1 the values of 𝑟(𝜑) are 
finite for all 𝜑, and the orbit is bounded, like those with 𝐸 < 0 noted above.  The fact that 
𝑟(𝜑 + 2𝜋) = 𝑟(𝜑) means that the orbit is closed and periodic (this is not the case for other 
types of force interactions such as 𝐹(𝑟)~− 1/𝑟3).   
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The orbit for 𝜖 < 1 is an ellipse and is described by (𝑥+𝑑)2

𝑎2
+  𝑦

2

𝑏2
= 1, where  𝑎 = 𝑐

1−𝜖2
 is 

the semi-major axis, 𝑏 = 𝑐
√1−𝜖2

 is the semi-minor axis, and 𝑑 = 𝑎𝑎 is the distance from the 
center of the ellipse to the focus (you will prove this in HW).  The ratio of semi-minor to 
semi-major axis lengths is 𝑏/𝑎 = √1 − 𝜖2, showing that 𝜖 is the ellipticity of the orbit.  One 
can also derive Kepler’s third law of planetary motion relating the orbital period 𝜏 and the 

semi-major axis as 𝜏2 = 4𝜋2

𝐺𝑀𝑠𝑠𝑠
𝑎3 for the case of a planet orbiting the sun (here one assumes 

that the mass of the planet is much smaller than that of the sun).  Finally we calculated the 

total mechanical energy in the center of mass frame as 𝐸 = 𝛾2𝜇
2ℓ2

(𝜖2 − 1).  This shows that 
orbits with 𝜖 > 1 are un-bounded (and described by a hyperbola), and those with 𝜖 < 1 are 
bounded.  Orbits with 𝜖 = 1 are parabolic. 

We next started a discussion of scattering theory.  In the simplest scattering experiment 
one has a particle or entity (the projectile) that is launched with a known energy and 
momentum into a target, the projectile interacts with particles in the target, and then comes 
out as the same particle but with a new energy and momentum.  More generally, the particle 
could be absorbed by the target, or be transformed into one or more different particles upon 
exiting the target.  We can measure the exiting angle of the particle using spherical 
coordinates, with the z-axis along the initial projectile direction and the angular coordinates 
𝜃,𝜑 specifying the new direction. Examples of scattering experiments include Rutherford 
scattering and angle-resolved photoemission spectroscopy (ARPES), which is basically the 
photoelectric effect on steroids. 

The only quantity not controlled in a typical scattering experiment is the impact 
parameter 𝑏 of the projectile with respect to the target particle.  The impact parameter is the 
distance of closest approach to the target particle, assuming no forces of interaction cause the 
projectile to change from its initial direction.  Because we cannot control the impact 
parameter, we have to perform many experiments in which all possible values of 𝑏 are 
employed for the incident beam of projectiles.  The objective of our calculations will be to 
find the functional relationship between the scattering angle and the impact parameter, 
namely 𝑏 = 𝑏(𝜃), or 𝜃 = 𝜃(𝑏). 

 

 

http://www.physics.umd.edu/courses/Phys410/Anlage_Spring13/Rutherford%20Scattering.pdf
http://www.physics.umd.edu/courses/Phys410/Anlage_Spring13/Rutherford%20Scattering.pdf

